svm의 주요 하이퍼파라미터1 서포트 벡터 머신(SVM): 머신러닝에서의 강력한 분류 알고리즘 서포트 벡터 머신(SVM): 머신러닝에서의 강력한 분류 알고리즘목차1. 서포트 벡터 머신(SVM)란 무엇인가?서포트 벡터 머신(Support Vector Machine, SVM)은 분류(Classification)와 회귀(Regression) 문제를 해결하는 데 사용되는 머신러닝 알고리즘입니다. 주로 고차원 데이터에서 선형 및 비선형 분류를 가능하게 하는 특징을 가지고 있으며, 다양한 산업 분야에서 데이터 분석과 모델링에 활용되고 있습니다.2. SVM의 기본 원리SVM의 핵심 개념은 결정 경계(Decision Boundary)를 만들어 데이터를 분류하는 것입니다. 가장 중요한 두 가지 요소는 다음과 같습니다:최대 마진(Maximum Margin): SVM은 두 클래스 간의 마진을 최대화하는 초평면(Hyp.. 2024. 11. 9. 이전 1 다음