데이터 분석을 위한 나이브 베이즈 알고리즘: 개념, 예제, 실습 가이드
나이브 베이즈 알고리즘은 머신러닝에서 가장 간단하면서도 강력한 분류 알고리즘 중 하나로, 특히 텍스트 분류와 같은 문제에서 뛰어난 성능을 발휘합니다. 이 알고리즘은 베이즈 정리를 기반으로 하며, 모든 특성이 독립적이라고 가정합니다. 이 단순한 가정에도 불구하고, 나이브 베이즈는 속도와 효율성 면에서 우수하여 스팸 필터링, 감정 분석, 의료 진단 등 다양한 분야에서 활용됩니다. 본 글에서는 나이브 베이즈의 수학적 원리, 주요 특징, 장단점, 활용 사례, 그리고 파이썬을 이용한 실습 방법까지 자세히 다룹니다.목차1. 나이브 베이즈란?1-1. 나이브 베이즈 알고리즘의 정의나이브 베이즈는 머신러닝의 지도학습 알고리즘 중 하나로, 확률 모델을 기반으로 데이터의 카테고리를 예측합니다. "나이브"라는 이름은 특성 간..
2024. 11. 14.